

The AgentX Protocol Implementation
For AGENT++

Version 1.4.8

Frank Fock

 2

1 Contents

1 CONTENTS 2

2 SYSTEM REQUIREMENTS 3

3 INSTALLATION 3

4 WHAT IS AGENTX++? 4

5 HOW AGENTX++ WORKS 6

5.1 The Master Agent 6
5.1.1 AgentX Session Management 7
5.1.2 AgentX++ Region Registration 8
5.1.3 AgentX Message Dispatching 12
5.1.4 Response Processing 14
5.1.5 Notification Forwarding 15
5.1.6 Index Allocation 15

5.2 The Subagent 17
5.2.1 Region Registration 18
5.2.2 Shared Tables 19

6 USING AGENTX++ 20

6.1 Creating an AgentX Master Agent 23
6.1.1 Configuration Options 24

6.2 Creating an AgentX Subagent 25
6.2.1 Using Shared Tables 27

 3

2 System Requirements

To use AgentX++ v1.4.2 you need SNMP++ v3.2 and AGENT++ v3.5.6 (or later)
installed. AgentX++ can be compiled without changes on Linux, Solaris 7, and Windows NT
(Visual C++ 6.0)1. As AgentX++ is available as source code license, it may be ported to
other operating systems as well, provided that an ANSI C++ compiler is available.

If context support is a requirement then SNMP++ v3.1 is needed and the SNMP++ library

as well as the AGENT++ library has to be compiled with the _SNMPv3 compilation flag set2.
The following table gives an overview of the requirements.

AgentX++ Feature Supported OS Required Libraries
Non-default contexts Linux, Solaris 7, Windows NT SNMP++v3.2,

AGENT++v3.5.6 (or later)
Default context only Linux, Solaris 7, Windows NT SNMP++v3.2*,

AGENT++v3.5.6 (or later)
TCP socket connections Linux, Solaris 7, Windows NT -
UNIX domain socket connections Linux, Solaris 7 -

* _SNMPv3 can be undefined in snmp++/include/con ig.h if context and SNMPv3 support
is not required.

f

3 Installation

Use any decompression tool capable of unpacking GNU zipped tape archive files (TAR),
for example WinZIP or gtar to unpack the downloaded agentX++.tar.gz file. Unpack the
file in the same directory where you installed SNMP++ and AGENT++. After installation, the
installation directory should look like:

installdir/
 agent++ AGENT++ installation
 agentX++ Installed AgentX++ package
 examples
 master
 subagent
 include
 src
 snmp++ SNMP++ installation

After installation the AgentX++ library can be compiled by changing the working directory

to installdir/agentX++/src and executing

1 Solaris and Windows NT are trademarks of SUN Microsystems and Microsoft respectively.
2 The _SNMPv3 flag has to be set consistently for SNMP++ in snmp++/include/config.h and for

AGENT++ in agent++/include/agent++.h.

 4

make – Makefile.<platform> f

4 What Is AgentX++?

AgentX++ is a C++ API that adds support of the AgentX protocol to the AGENT++ API.
can be used in conjunction with the AGENT++ and SNMP++ API to create SNMP agents
supporting the AgentX protocol. The Agent Extensibility (AgentX) Protocol3 defined by the
Internet Society is a standardized protocol for the communication between SNMP master and
subagents. The motivation for AgentX is given by RFC 2741 as follows:

New MIB modules that extend the Internet-standard MIB are continuously being

defined by various IETF working groups. It is also common for enterprises or individuals
to create or extend enterprise-specific or experimental MIBs.

As a result, managed devices are frequently complex collections of manageable

components that have been independently installed on a managed node. Each
component provides instrumentation for the managed objects defined in the MIB
module(s) it implements.

The SNMP framework does not describe how the set of managed objects supported

by a particular agent may be changed dynamically.

This very real need to dynamically extend the management objects within a node has

given rise to a variety of "extensible agents", which typically comprise

• a "master" agent that is available on the standard transport address and that accepts
SNMP protocol messages

• a set of "subagents" that each contain management instrumentation

• a protocol that operates between the master agent and subagents, permitting

subagents to "connect" to the master agent, and the master agent to multiplex
received SNMP protocol messages amongst the subagents.

• a set of tools to aid subagent development, and a runtime (API) environment that

hides much of the protocol operation between a subagent and the master agent.

The wide deployment of extensible SNMP agents, coupled with the lack of Internet

standards in this area, makes it difficult to field SNMP-manageable applications. A
vendor may have to support several different subagent environments (APIs) in order to
support different target platforms.

It can also become quite cumbersome to configure subagents and (possibly multiple)

master agents on a particular managed node.

Specifying a standard protocol for agent extensibility (AgentX) provides the technical

foundation required to solve both of these problems. Independently developed AgentX-
capable master agents and subagents will be able to interoperate at the protocol level.
Vendors can continue to differentiate their products in all other respects.

3 The AgentX Protocol Version 1 is defined by RFC 2741 and updates thereof.

 5

Readers that are not familiar with the AgentX specification are encouraged to read the

corresponding RFCs before proceeding. Knowledge of the AgentX protocol is required in
order to understand and use all features of AgentX++.

AgentX++ extends AGENT++ without changing the interface between AGENT++ and the

management instrumentation. Thus, an existing AGENT++ agent can be migrated to an
AgentX master or subagent within minutes by only changing a few lines of code within the
agents main routine. The system architecture of an AgentX++ master or subagent is shown
by . Figure 1

Figure 1: AgentX++ System Architecture

Figure 1

The interface between AGENT++ and the management instrumentation is defined

through the AGENT++ classes MibLeaf and MibTable. These classes are used unchanged
with AgentX++. What changes is the Mib class. It is subclassed by the MasterAgentXMib
class and the SubAgen XMib class like it is shown by . t

The AgentX++ API user decides by choosing one of these classes, whether she

implements an AgentX master or an AgentX subagent. The transport layer dependent
functions, represented by the classes AgentXMaster and AgentXSlave, are separated by
aggregation from the classes MasterAgentXMib and SubAgentXMib respectively. This
facilitates porting AgentX++ to new operating systems or adding new transport protocols.

 6

AgentXSlave

AgentX

SubAgentXMibMasterAgentXMib

Mib

AgentXMaster

agentxagentx

 Figure 2: UML Class View of AgentX++ Mib class extensions

5 How AgentX++ Works

This chapter explains how the AgentX protocol extension for AGENT++ is implemented
and why this implementation meets the requirements of the AgentX protocol specification.
Readers who are familiar with the AgentX protocol and interested in a quick start may skip
this chapter and proceed with chapter 6.

5.1 The Master Agent

The AgentX specification requires for an AgentX master agent, that it is capable of
performing the following functions:

• Establishment of AgentX sessions with subagents.

• Registration of MIB regions by subagents. A MIB region is given by an object identifier

that names a subtree4. Regions registered by different subagents may overlap. Regions
may be registered with different priorities. When dispatching a SNMP request, the master
agent determines the authoritative region by

1. choosing the region that was originally registered with the most specific region,
2. if there is still more than one applicable region, then the one with the lower priority

value is chosen.

4 There are other special regions that do not name a single subtree. Instead those regions specify

rows in tables. See the AgentX Protocol specification for details.

 7

• Application of MIB views, access control policy for managed nodes, and implementation
of any MIB objects relevant to any administrative framework the agent supports,
particularly the MIB objects defined in RFC 1907.

• Sending and receiving AgentX protocol messages to access management information,

based on the current registry of MIB regions.

• Forwarding notifications on behalf of subagents.

The AGENT++ framework provides already most of the above functions. What is missing
is the ability to register overlapping regions and dispatching SNMP requests to AgentX
subrequests. The following sections describe how

• sessions are managed by an AgentX++ master agent
• region registration is implemented
• requests are dispatched
• notifications are forwarded
• index allocation is implemented.

5.1.1 AgentX Session Management

An AgentX++ master agent has dedicated threads for processing AgentX messages. Thus,

multi-threading support must be available and activated5 with an AgentX++ master agent.

When a subagent requests an UNIX domain socket or TCP connection, the master usually

accepts it and establishes the connection. On success, the master adds an AgentXPeer class
instance to the internal list of connected peers. It also adds the appropriate entries into the
agentxConnectionTable of the AgentX MIB.

The next request on the newly established connection has to be an AgentX OPEN PDU.

Whenever such a PDU is received an AgentXSession instance is created and added to the list
of open sessions. In addition, an appropriate row in the agentxSessionTable is created. Each
AgentXSession instance has a reference to the AgentXPeer describing the connection over
which the OPEN PDU has been received. shows how the AgentX++ classes involved
in session management are related to each other.

Figure 3

5 Multi-threading is activated by defining the _THREADS macro in AGENT++‘s agent++.h file. It is

activated by default.

 8

AgentXAgentXSynchronized

MasterAgentXMib

AgentXPeer

Mib

AgentXSessions

AgentXSession

AgentXMaster

axSocketLock

openSessions

registrationLockindexLock

agentx

peer

1

0..n

Figure 3: UML Class View of master agent related AgentX++ classes

When a session is closed by a subagent, the corresponding AgentXSession object is

removed from the list of opened sessions. All the registrations of index values and regions
allocated on behalf of this session are removed, as well as all corresponding entries within
the AgentX MIB.

When a connection to a subagent is dropped, then all sessions opened on behalf of this

connection are closed.

When the master agent is stopped it closes all open sessions and thus sends a session

CLOSE PDU to all sessions.

5.1.2 AgentX++ Region Registration

With AGENT++ is capable of registering regions that have a lower and an upper bound.

Such a region registration is done by adding a MibEntry instance to the agent’s Mib instance.
A Mib instance has an AVL tree for each supported context which holds registered MIB
objects (regions). Each MIB object has a key, which is normally its object identifier, and a
maximum key. The maximum key is returned by the MibEntry::max_key() method and
returns the non-including upper bound of the registered region.

 9

AgentXNode

Mib

MibEntry

AgentXRegEntry

AgentXRegion

1n

MibContext

1

n

1

n

1

1

Figure 4: UML Class View of the AgentXNode and related classes.

Figure 4

AgentX++ uses the AgentXNode class to register its AgentX regions. AgentXNode is a

subclass of MibEntry and thus has a lower and a non-including upper bound. Therefore, an
AgentXNode instance can be used to register an atomic region.

How the AgentXNode class is related to other classes of AgentX++ and AGENT++ shows

. Each AgentXNode contains exactly one AgentXRegion. It holds to lower and the
upper bound of the region represented by that node. Each AgentXNode has one or more
registration entries represented by AgentXRegEntry instances. These entries are sorted by
length of their registration object identifier in descending order and their priority value in
ascending order. When a SNMP request is dispatched to an AgentXNode it uses the first
entry of the registration list. This entry points to the session and thus to the connection, that
should be used to forward the request using AgentX. shows an AgentXNode holding
registration information about the region from ifIndex.2 (1.3.6.1.2.1.2.2.1.1.2) to ifIndex.3
(1.3.6.1.2.1.2.2.1.1.3).

Figure 5

The question raised by the example is, how overlapping regions could be registered when

an AgentXNode may only be used for atomic regions? The solution for this dilemma is
splitting existing registered regions (AgentXNodes), when they overlap with the newly
registered one. shows the consecutive processing of four regions and the resulting
AgentXNode registration.

Figure 6

Each time a new registration is requested and it affects existing regions, it is processed as

follows:

• If the new region equals an existing one, then the new registration entry will be
added to the registration list of the existing one, if the new registration has a different

 10

priority to all existing entries in that list. If it has the same priority as another entry, then
the registration will be denied because of a duplicate registration.

• If the new region covers the existing ones, then the existing regions will be

subtracted from the new one. The resulting regions will be added to current MIB context
by creating corresponding AgentXNode instances, which will contain a single registration
entry. This original registration entry will also be added to the registration lists of the
affected existing AgentXNodes.

• If the new region is covered by an existing region, then the existing one will be

split into two or three parts. There will be three parts if both regions do not share a
boundary. The new registration entry will be then added to the split parts.

• If the new region overlaps with any non-AgentX region (i.e., MibLeaf, MibTable,

etc.), then the registration request will be denied.

If no region is affected by the new one, then a new AgentXNode is created with
representing the new registration. Particularly, this is the case, when a subagent registers a
region in a new context. A MasterAgentXMib instance may be configured to allow a subagent
to implicitly create contexts in the master agent by simply registering a region for a new
context.

Is auto context creation enabled (by calling Maste AgentXMib::set_auto_context), the
master agent will also add new contexts to the View Access Control Model (VACM) MIB. By
default, auto context creation is disabled and a subagent may not register any regions for
contexts that are not known by the MasterAgentXMib instance.

r

In either case, appropriate configuration entries in the VACM MIB have to be added to
map a user/context combination to an access group. This configuration may be done via
SNMP or by the master agent. Enable auto context creation and overwrite the
MasterAgentXMib::add_new_context method in the latter case.

When existing regions are split, the lower bounds of the corresponding AgentXNodes are

never changed, because AGENT++ uses an AVL tree to store its MIB objects and the lower
bound of an AgentXNode is at the same time the key used by that AVL tree. Would this key
be changed while it is registered, the MIB’s lookup routines will stop working correctly.

Figure 5: Example AgentXNode

 11

The unregistration process is realized in a similar way to the registration process.

When a unregistration takes place, all AgentXNodes are searched for the registration entry
referenced by the unregister request. If an AgentXNode contains that entry, it will be
removed from that node. If the node then does not have any registration entry, the node will
be removed from the MIB too. If the node has exactly one registration entry and the
predecessor AgentXNode also has exactly the same entry and both regions border on each
other, then the second node will be removed from the corresponding MIB context and the
predecessor’s region will be expanded in order to include the union of both regions.

Figure 6: Example of a registration process

 12

5.1.3 AgentX Message Dispatching

AGENT++ dispatches SNMP messages to method routines using a conceptual dispatch

table. It is called conceptual, because it is not a table, but an AVL tree of AVL trees. The first
one is indexed by SNMPv3 contexts6, the second one is indexed by management information
identifiers (object identifiers) and contains MibEntry instances. A MibEntry instance
represents a managed object. The MibEntry class is abstract and thus it does only define an
interface to the method routines of a managed object.

When AGENT++ processes a SNMP request, it selects the AVL tree to be used to dispatch

the request by the request’s context information. AGENT++ then searches for each
subrequest the authoritative managed object. If such an object can be found its appropriate
method routine will be called depending on the type of the SNMP request.

Similarly, AGENT++ dispatches SNMP subrequests where an AgentXNode is the

authoritative managed object. AGENT++ calls the appropriate method routine of the
AgentXNode. It then propagates the subrequest to the AgentX subagent, which is owner of
the authoritative registration entry within that node. But this is not done subrequest by
subrequest like the SNMP proxy managed objects MibProxy or MibProxyV3 of AGENT++ do
it. In fact, AgentX++ ensures that for each incoming SNMP request it sends at
most one AgentX request to each affected AgentX session7, which gains performance
and which enables the master agent to perform SET requests atomically.

If AgentX++ had handled each subrequest individually, it would have been impossible for

an AgentX subagent to determine whether two or more of those subrequests are related.
Only if the subagent knows that two SET subrequests are related (are in the same PDU), it
will be able to determine whether those subrequests are mutually exclusive.

So, how does it actually work? When an AgentXNode’s method routine (e.g.,

AgentXNode::prepare_set_request) is called it computes all information needed to create an
AgentX request addressed to the authoritative session of that node. It then calls the
add_get_subrequest or add_set_subrequest method of the MasterAgentXMib instance,
respectively. These methods actually create and queue AgentX requests. If there is not
already an AgentX request queued (but not sent) for the current transaction and target
AgentX session, then a new request will be created and queued, otherwise the subrequest
will be appended to the existing one. Since the index of a subrequest within the resulting
AgentX requests do not necessarily correspond to the index of the original subrequest, a
reference is stored within the queued AgentX request, which enable the master agent to
map AgentX responses back to the original subrequests.

Queued AgentX request are sent when the virtual Mas erAgentXMib::finalize(Request*)

method is being called. If there are any queued AgentX requests for the SNMP request being
finalized, the request will not be answered, instead the queued AgentX request will be sent.
Hence, all subrequest that can be processed locally will be processed before any AgentX
request is sent. This avoids unnecessary communication if an error occurs while processing
the subrequests with local scope.

t

6 For SNMPv1 and SNMPv2c there is only a single context, which is called the default context.
7 This statement does not apply to GETNEXT or GETBULK request, because of the search facilites

of these requests.

 13

Command Generator

AgentX++ AgentX Session 1 AgentX Session 2

SET(1,2,3,4,5,6)

AgentX Session 3

MibEntry::prepare_set_request(3)

TEST_SET_PDU(1,4)
TEST_SET_PDU(2,6)

TEST_SET_PDU(5)

RESPONSE_PDU(1,4)
RESPONSE_PDU(5)

RESPONSE_PDU (2,6)

MibEntry::commit_set_request(3)

COMMIT_SET_PDU(1,4)
COMMIT_SET_PDU(2,6)

COMMIT_SET_PDU(5)
RESPONSE_PDU(5)

RESPONSE_PDU(1,4)
RESPONSE_PDU(2,6)

MibEntry::cleanup_set_request(3)

CLERANUP_SET_PDU(1,4)
CLEANUP_SET_PDU(2,6)

CLEANUP_SET_PDU(5)
RESPONSE(1,2,3,4,5,6)

Figure 7: Sequence Diagram of a successful SET-request (values in brackets
represent SNMP subrequest indexes)

Figure 7

, for example, shows how AgentX++ dispatches a SNMP SET request with six
subrequests, which were all processed successfully. In the shown example, the master agent
sends nine AgentX request and receives six responses. A master agent that does not group
subrequests would have sent fifteen AgentX request and would have received ten responses.
That is a communication increase of 67 percent.

Dispatching search requests like GETNEXT or GETBULK is more complicated than

dispatching the above discussed GET and SET requests. Dispatching a search request may
involve trying several regions before an object can be found that matches the search criteria.
Thus, when a search on a particular region fails, the subrequest is reprocessed with the next
registered region or MIB object. The Reprocessing is realized by calling the
Mib::do_process_request() method again with the partly processed request and the search
OID of the failed subrequest replaced by the OID of the upper bound of the empty region.

AgentX++ dispatches BULK requests as described in section 7.2.1.3 of RFC 2741 (italic

text indicates AgentX++ specific behavior):

Each variable binding in the request PDU is processed as follows:

 14

1.Identify the authoritative target region and target session, exactly as described for the agentx-
GetNext-PDU (see section 7.2.1.2, "agentx-GetNext-PDU").

2.If this is the first variable binding to be dispatched over the target session in a request-response

exchange entailed in the processing of this management request:

• Create an agentx-GetBulk-PDU for the session, with the header fields initialized as
described above (see section 6.1, "AgentX PDU Header").

3.Add a SearchRange to the end of the target session's agentx-GetBulk-PDU for this variable

binding, as described for the agentx-GetNext-PDU. If the variable binding was a non-repeater
in the original request PDU, it must be a non-repeater in the agentx-GetBulk-PDU.

The value of g.max_repetitions in the agentx-GetBulk-PDU may be less than (but not greater than) the
value in the original request PDU.

The AgentX++ master agent makes such alterations due to simple sanity checking, optimizations for the
current iteration based on the registry, and the maximum possible size of a potential Response-PDU.

5.1.4 Response Processing
Since version 1.4, AgentX++ uses thread pools instead detached threads. Using thread

pools improves performance because threads are only created once and the number of
threads concurrently running is limited. In addition, an agent can be shut down more cleanly
when no detached threads are used.

AgentX++ uses the following four thread pools:

• A thread pool with the default size of four threads that is used to process incoming

SNMP requests. This is the same thread pool as present in AGENT++.
• A thread pool with a single thread (default) that processes AgentX requests, not

including AgentX responses received from subagents.
• A thread pool with a single thread (default) that processes AgentX responses on GET,

GETNEXT, and GETBULK requests.
• A thread pool with a single thread that processes AgentX responses on SET related

requests.

SET responses are handled in a different thread because SET requests have to be
processed atomically by a SNMP agent. Thus, AgentX++ locks all objects (resources)
required to answer a SET request before processing begins and releases these locks not
before processing of the SET request has finished. Unfortunately, SET requests are not
processed in a single step with AgentX. For this reason it is necessary to process SET related
responses in a different thread than for example GETBULK responses. Otherwise, the
processing of a GETBULK request could hit an object locked by a pending SET request. This
would block the GETBULK resulting in a dead lock because the next response related to the
pending SET request cannot be processed until the GETBULK leaves the response thread.
One could argue now, that it would be sufficient to increase the size of the response thread
pool. But it would not solve the problem on principle.

When a request needs reprocessing, for example a GETBULK or SET request, then
sending the AgentX subsequent requests must be done from the thread pool dedicated to
AgentX request processing.

 15

5.1.5 Notification Forwarding

AGENT++ includes a class named NotificationOriginator, which provides services to

generate notifications (traps). This class uses the MIB objects defined in the SNMP-
NOTIFICATION-MIB, SNMP-TARGET-MIB and SNMP-COMMUNITY-MIB to determine target
destinations and their parameters as well as to control notification filtering.8

AgentX++ forwards each received AgentX notification by calling the notify method it

inherits from the Mib class. By default, the Mib::notify method uses a NotificationOrigina or
instance. Hence, AgentX++ uses the same MIBs to control the generation of notifications as
AGENT++ does.

t

5.1.6 Index Allocation

The index allocation service is provided by an AgentX++ master agent to support sharing

conceptual tables among subagents. The master maintains a database of index objects
(OIDs), and, for each index, the values that have been allocated for it. That database is
implemented by the AgentXIndexDB class. The relation between an index object and its
allocated values, represented by the AgentXIndexEntry class, is represented by the
AgentXIndex class. Figure 8 shows how these classes are related with the MasterAgentXMib.
An index database is automatically created for a context when the first index for that context
is being allocated. A subagent may request allocation of

1. a specific index value (allocate index)
2. an index value that is not currently be allocated (any index)
3. an index value that has never been allocated (new index)

In the first case, the subagent chooses an index value, in the second and third case the
master agent creates an appropriate value and returns it to the subagent. AgentX++
supports the allocation of a specified index for any type of valid index objects, which are:

• Integer32
• Timeticks
• Gauge32
• OCTET STRING
• BITS
• Opaque
• IpAddress
• OBJECT IDENTIFIER

AgentX++ is able to create new index values for Integer32 and Gauge32 (which is

undistinguishable from UInteger32) index objects only. This not a crucial restriction, because
index allocation is necessary only when the index in question is an arbitrary value, and the
subagent has no other reasonable way to determine which index value to use.

8 The SNMP-NOTIFICATION-MIB and the SNMP-TARGET-MIB are defined in RFC 3413. The SNMP-

COMMUNITY-MIB is specified in RFC 2576.

 16

AgentXIndexDB

AgentXIndexEntry

AgentXIndex

1

n

1

n

MasterAgentXMib

1

n

Figure 8: UML class view of index allocation related classes

An index allocation may allocate values for more than one index object at once. All three

types of index allocations are executed atomically. That is, if the allocation or creation of an
index object fails, then AgentX++ will not allocate any value for the other index objects of
that request either.

 17

5.2 The Subagent

The architecture of an AgentX++ subagent is similar to an AGENT++ agent. All SNMP
transport specific functions are replaced by their AgentX counterparts. This is achieved by
subclassing the AGENT++ classes Mib, RequestList, and Request as shown in . Figure 9

Figure 9: Simplified UML class model of subagent related AgentX++ classes

View Access Control is not needed by AgentX subagents. Hence, an AgentX++

subagent does not use the Vacm class for view access control. Instead it uses the NoVacm
class, which always permits access.9

Notifications are sent by an AgentX subagent to its master agent rather than directly to

any notification receivers. Thus, an AgentX++ subagent should not implement the SNMP-
TARGET-MIB, SNMP-NOTIFICATION-MIB, and SNMP-COMMUNITY-MIB. Consequently, the
NotificationOrigina or class cannot be used for generating notifications. Instead, the
SubAgentXMib class overrides the notify method of Mib. By calling the SubAgentXMib::notify
method, a notification is propagated to the master agent, which then forwards the
notification itself to the notification receivers determined by evaluating the SNMP-TARGET-
MIB and SNMP-NOTIFICATION-MIB.

t

MibTable

AgentXSlave

RequestList

AgentXSharedTable

AgentX

Vacm

SubAgentXMib

Mib

Request

vacm

backReference

agentx

requestList

vacm

NoVacm

AgentXRequestList
AgentXRequest

agentx

1

n

AgentX shared tables extend SNMP tables by an additional characteristic, which allows

such tables to be shared between different subagents. AGENT++’s MibTable class has no
means to support this. The AgentXSharedTable extends the MibTable class in order to
provide these means for AgentX++ subagents.

9 If SNMPv3 support is disabled (see section 1), then AgentX++ will not use the NoVacm class nor

the Vacm class.

 18

5.2.1 Region Registration

An AgentX subagent has to register its MIB objects at its master agent (see section

5.1.2), before the master agent will be able to dispatch any messages to the subagent.
Crucial point for efficiency is the granularity of the registered regions. The less specific a
region is registered, the more efficient it is accessed through the master agent.
Nevertheless, it is not advisable to register a single region like the mgmt subtree (1.3.6.1.2),
because it might then be difficult or impossible for other subagents to override or add other
regions within such a region (subtree).

AgentX++ gives the API user full control over the registration granularity. With the

MibGroup class from AGENT++ MIB objects can be logically grouped. In the first place,
AGENT++ uses this class to logically group MIB objects, which should be made persistent at
once.

Each MibGroup has an object identifier (key) that should denote the most specific subtree

that covers all MIB objects within that group. AGENT++ checks that only MIB objects with
an object identifier within that subtree may be added to a MibGroup.

AgentX++ registers its MIB objects during the initialization of the SubAgentXMib as

follows:

• A MibGroup is registered as a single region with the master. The region registered is the
subtree denoted by the group’s key. All MIB objects added to that group are not
registered explicitly.

• Each MIB object, that is not part of any MibGroup, is registered with its own region.

MibLeaf objects are registered as single instance regions, whereas MibTable as well as
MibComplexEntry objects are registered as subtree regions.

MIB objects added to the SubAgen XMib after its initialization are registered as follows: t

• MibGroup instances or MIB objects other than AgentXSharedTable instances are
registered as described above. AgentXSharedTable instances should be added through a
special method that suppresses registration of the whole table. This should be done for
better dispatching performance, but is optional.

• An AgentXSharedTable registers each row that is added by calling its add_row method by

a range registration (see section 6.2.3 of RFC 2741). Consequently, rows must not
be added before the SubAgentXMib is initialized, because the registration process
needs an open AgentX session. It is recommended to use only consecutive sub-identifier
values for the columns of a shared table. Since rows of a shared table are registered
using range registration (see 5.1.2), gaps are processed as if those columns where
actually present. Thus, performance of retrieving the table goes down straight
proportional to the size of the gap. If large gaps are needed (for example because the
MIB specification cannot be changed), then the method AgentXSharedTable::add_row
should be overwritten to replace the range registration by an individual registration of
the column instances.

 19

The registered regions are unregistered whenever a MIB object or MibGroup is removed
from the SubAgentXMib. A row of an AgentXSharedTable instance is removed when the
remove_row method is called.

If a region registration is acknowledged by the master agent, the registration_success

method of the SubAgen XMib will be called. Except for shared table row registrations, no
further action is performed by this method. An API user who needs to trigger any actions on
a successful registration will have to override this virtual function.

t

After a failed registration attempt, the registration_failed method will be called, which

does not perform any actions by default, because a general reaction cannot be defined. An
API user who wants to react on a failed registration should override this method.

Contexts need not to be registered explicitly. The master agent may reject the registration

of a region for an unknown or unsupported context (see also 5.1.2).

5.2.2 Shared Tables

Conceptual tables that may be shared among AgentX subagents are represented by the

AgentXSharedTable class. It extends AGENT++’s MibTable class by means for dynamically
allocating and deallocating index values as well as registering and unregistering rows.

Instead using the add_row method directly to add a new row to a shared table, one of

the three methods for index allocation should be used. They send an index allocation request
to the master and return immediately. When the acknowledgement from the master is
received, the row is added and a region registration request is sent to the master (see

). Only when the acknowledgement of the region registration is received the table’s
row_added method is called.

Figure
10

The add_row method uses range registration (see 5.1.2) to register a row with the master

agent. This approach can be ineffective if the columns of a shared table are not
consecutively numbered. In such a case, overwriting the add_row method to replace the
range registration by individual registrations is recommended.

 20

Subagent
AgentXSharedTable SubAgentXMib

new_index()

index_allocated()

add_row ()

fire_row_changed()

remove_row ()

row_delete ()

allocate_index()

register_region()

Master Agent

INDEX_ALLOCATE_PDU
RESPONSE_PDU

REGISTER_PDU

RESPONSE_PDU

register_region()
UNREGISTER_PDU
RESPONSE_PDU

row_added ()

registration_success()

index_allocated()

Figure 10: Successful row creation / deletion sequence diagram

In case of an error, i.e. if the index allocation failed, the table’s index_allocated method

will be called with the corresponding error code and error index. The error index denotes the
failed index object. A failed region registration is ignored by default (see section 5.2.1).

6 Using AgentX++

One of the goals of AgentX++ is making the migration from an AGENT++ agent to an
AgentX master or subagent as simple as possible. Consequently, the AgentX++ API hides
most of the AgentX protocol specific characteristics. Thus, for those who are already familiar
with AGENT++, using AgentX++ should be easy.

The sections 6.1 and 0 describe in detail how an AGENT++ agent is converted into an

AgentX master or an AgentX subagent, respectively. The sections are structured according to
the general structure of an AGENT++ agent, which is shown by . Figure 11

 21

Init

SNMP
Init
MP

Creating
MIB

Init
Signals

Registering
RequestList

Init
RequestList

Adding
MIB Objects Main LoopAdding

USM & VACM
Init
MIB

Figure 11: Structure of an AGENT++ agent (SNMPv3 components are gray)

Since the understanding of an AGENT++ agent’s structure is a prerequisite for being able

to use AgentX++, a short overview of the agent’s components is given below:

1. Initialize SNMP
Creates a Snmpx instance with the SNMP port the agent will listen on:

 Snmpx snmp(status, port);

2. Initialize Message Processing
Initializes the SNMPv3 Message Processing component of a SNMPv3 agent with its SNMP
message processing component (from 1.), its engine ID, and its boot counter:

mpInit(&snmp, engineId, snmpEngineBoots);

3. Creating the MIB
Creates the Mib instance that will hold all MIB information of the agent, and that will
dispatch SNMP requests:

mib = new Mib();

4. Register the Request List

Registers a RequestList instance with the Mib instance created under 3. The request list
receives, sends, and queues requests. It is thus responsible for managing requests.

 reqList = new RequestList();
 mib->set_request_list(reqList);

5. Initializing the Request List
The request list needs the SNMP message processing component in order to be able to
send and receive SNMP messages. The initialization of the request list is done by
registering the SNMP message processing component created under 1.

reqList->set_snmp(&snmp);

6. Initialize Signals
An agent runs as a daemon process, which runs forever. It is stopped by sending a
SIGTERM signal. In order to be able to shutdown the agent properly (i.e., storing MIB
objects to disk), the agent has to catch this and other signals to perform any necessary
actions, for example deleting the Mib instance created under 3.

7. Adding MIB Objects
Adds (registers) all MIB objects (and groups) that should be statically supported by the
agent. Dynamic MIB objects should be added to the MIB within the Main Loop
component.

...

 22

mib->add(new snmp_target_mib());
mib->add(new snmp_notification_mib());
mib->add(“myContext”, new if_mib());
...

8. Adding User Security Model & View Access Control Model MIB objects

A SNMPv3 agent must implement the USM and VACM MIBs. This component initializes a
basic set of objects of those MIBs and adds them to the Mib instance created under 3.
Besides, the VACM MIB needs to be registered with the request list created under 4. in
order to be able to control the access to the MIB objects using the VACM information.

UsmUserTable *uut = new UsmUserTable();
...
// add non persistent USM statistics
mib->add(new UsmStats());
// add the USM MIB - usm_mib MibGroup is used to
// make user added entries persistent
mib->add(new usm_mib(uut));
// add non persistent SNMPv3 engine object
mib->add(new V3SnmpEngine());

 mib->add(new MPDGroup());

Vacm* vacm = new Vacm(*mib);
reqList->set_vacm(vacm);

9. Initializing the MIB
The last action, that has to be executed before entering the main loop, is initializing the
Mib. This includes, for example, loading MIB data from persistent storage as well as
initializing MIB objects with management information got from the underlying managed
systems. Afterwards, a cold start trap/notification may be sent.

mib->init();
...
coldStartOid coldOid;
mib->notify("", coldOid, 0, 0);

10. Main Loop

The main loop is responsible for processing incoming requests, monitoring the managed
systems (that includes sending notifications), and updating management information that
is not updated on demand (i.e., when a request for that information is pending).

Request* req;
while (run) {

 req = reqList->receive(2);

 if (req) {
 mib->process_request(req);
 }
 else if ((reqList->size() == 0) &&
 (mib->get_thread_pool()->is_idle())) {
 mib->cleanup();
 }

 23

}
mib->delete_thread_pool();
delete reqList;
delete mib;
delete agentx;

The example main loop above loops every two seconds. The timeout parameter for the
receive method of the RequestList may be set to 0, which makes the receive method non
blocking. With the Snmpx::get_session_fds method the API user can get the socket
descriptor used for incoming SNMP requests, which enables the user to use a select()
outside the API to control the agent’s IO.

6.1 Creating an AgentX Master Agent

The way an AgentX++ master agent is implemented is only slightly different from an

AGENT++ agent. shows, that an AgentX++ master agent needs an additional
component which initializes the AgentX protocol stack. The additional component is marked
by an *. Besides, the Mib used must be an instance of the MasterAgentX class.
Consequently, the Mib instance creation component has to be changed too.

Figure 12

Figure 12: Differences between an AgentX++ master and an AGENT++ agent

Init
SNMP

Init
MP

Creating
MIB

Init
Signals

Registering
RequestList

Init
RequestList

Adding
MIB Objects Main LoopAdding

USM & VACM
Init
MIB

! Init
AgentX*

The following list explains in detail the modifications that have to be made in order to

create an AgentX++ master agent from an AGENT++ agent:

1. Creating the Mib

Before the master agent’s Mib instance can be created, the Mas erAgentXMib and
associated classes have to be included into the main program by

t

t

#include "agentx_master.h"

Instead creating an instance of the Mib class as described by component 3 of section 6,
an AgentX++ master agent creates a MasterAgentXMib instance that will dispatch SNMP
requests and AgentX requests:

mib = new MasterAgentXMib();

2. Initializing the AgentX protocol
An additional component that initializes the AgentX protocol stack has to be inserted
after the initialization of the RequestList. With the initialization it can be determined
whether the master agent should use UNIX domain socket connections and/or TCP
connections for AgentX communication. This is done by using the set_connec _mode

 24

method of the AgentX(Master) class. The file agentx_def.h defines two integer values,
AX_USE_UNIX_SOCKET and AX_USE_TCP_SOCKET, which can used as parameter for
that method. In order to support both connection types, the values can be ored.
The UNIX port location is set by set_unix_port_loc and the TCP port is set by
set_tcp_port. The default values are shown by the below example:

AgentXMaster* agentx = new AgentXMaster();
#ifdef AX_UNIX_SOCKET

 agentx->set_connect_mode(AX_USE_UNIX_SOCKET|AX_USE_TCP_SOCKET);
 agentx->set_unix_port_loc("/var/agentx/");

#else
 agentx->set_connect_mode(AX_USE_TCP_SOCKET);

agentx->set_tcp_port(705);
#endif

 mib->set_agentx(agentx);

The last statement of this component should be registering the AgentX protocol stack
with the MasterAgentXMib instance.
Please note that the UNIX domain socket related functions may not available on non
UNIX systems. Thus, they should be used only enclosed with #ifdef AX_UNIX_SOCKET.

6.1.1 Configuration Options

When the MasterAgentXMib instance is created it automatically registers the AgentX MIB.

Most of the managed objects defined in the AgentX MIB are informational only, i.e. they
cannot be changed, except the agentxSessionAdminStatus object. It can be used to close a
session with a subagent, by setting its value to down(2). By default, the
agentxSessionAdminStatus object is read-write accessible. In order to make it read-only, the
set_session_admin_status_writable method of MasterAgentXMib has to be called:

mib->set_session_admin_status_writable(false);

 25

Creating an AgentX Subagent

The implementation of an AgentX++ subagent is in some ways easier that implementing

an AGENT++ agent, which on the other hand is not very difficult as well. Even if the master
agent will support SNMPv3, the corresponding AgentX subagent needs not to deal with
SNMPv3 related stuff at all. Therefore, all SNMPv3 related components have to be removed
(omitted) from an AgentX++ subagent as it is illustrated by . Figure 13

Figure 13: Differences between an AgentX++ subagent and an AGENT++
agent

Init
SNMP

Init
MP

Creating
MIB

Init
Signals

Registering
RequestList

Adding
MIB Objects Main LoopAdding

USM & VACM
Init
MIB

! !!
X XX Init

AgentX*

Since a subagent does not handle SNMP requests directly, the initialization of the SNMP

protocol stack as well as the initialization of the RequestList is not needed. The place of the
latter one is taken by the initialization of the AgentX protocol stack. This and the other
changes needed are listed in detail below:

1. Creating the Mib
Before the subagent’s Mib instance can be created, the SubAgentXMib and associated
classes have to be included into the main program by

#include "agentx_subagent.h"

Instead creating an instance of the Mib class as described by component 3 of section 6,
an AgentX++ subagent creates a SubAgentXMib instance that will dispatch the AgentX
requests received from the master:

mib = new SubAgentXMib();

2. Initializing the AgentX Protocol
Because an AgentX subagent responds to AgentX requests, the AgentX protocol must be
initialized before the agent’s request list:

AgentXSlave* agentx = new AgentXSlave();
#ifdef AX_UNIX_SOCKET

 agentx->set_unix_port_loc("/var/agentx/");
 agentx->set_connect_mode(AX_USE_UNIX_SOCKET|AX_USE_TCP_SOCKET);

#else
 agentx->set_connect_mode(AX_USE_TCP_SOCKET);

#endif

The AgentX protocol of the subagent is initialized in a similar way to a master agent (see
list item 2 of section 6.1). The only difference is that the AgentXSlave class is used
instead of the AgentXMaster class, which would be used with a master agent.

 26

3. Registering the RequestList
Since the subagent does not handle SNMP requests but AgentX requests, the RequestList
class cannot be used to receive, send, and queue the requests. Instead, the
AgentXRequestList must be used, which takes the AgentX protocol stack from above as
parameter.

reqList = new AgentXRequestList(agentx);
mib->set_request_list(reqList);

4. Initialize MIB

MIB initialization can be done likewise to AGENT++. The SubAgentXMib::init() method
loads any persistent data from disk and then opens the connection to the master agent.
In contrast to Mib::init() it may thus return FALSE if the connection could not have been
established. This behavior can be used to implement a subagent that tries to reconnect
to its master agent once a connection got broken.

mib->init();

5. Main Loop
When the connection to the master agent is cut off, the subagent may react in two
possible ways. First, it may stop running, and second it may try to reestablish the
connection to the master agent. An example for the main loop for the first case is shown
below:

 Request* req;
 while (!mib->get_agentx()->quit()) {
 req = reqList->receive(20000);
 if (req) {
 mib->process_request(req);
 }
 else {
 mib->ping_master();
 }
 ...
 }

The example subagents coming with AgentX++ stop running when the connection to the
master is broken. This behavior may be modified to allow the subagent to try to
reestablish the connection:

do {
 while (!mib->get_agentx()->quit()) {

 req = reqList->receive(40000);

 if (req) {
 mib->process_request(req);
 }
 else {
 mib->cleanup();
 }
 }

 27

 mib->save_all(); // save persistent data to disk
 retries = 0;
 // Try to reconnect 10 times every 10 seconds
 while ((retries++ < 10) && (!mib->init())) {
 sleep(10);
 }
 }
 while (retries < 10); // stop after 10 consecutive failures

6.1.2 Using Shared Tables

Unlike normal tables, a shared table is not registered as a whole, but row by row (for

more details see section 5.2.2). By it, several subagents can share a table. But since the
subagents are supposed to be independent from each other, table sharing will not work
reliable without index allocation (see section 5.1.6). Nevertheless, an AgentXSharedTable
may be used without index allocation too, even though it does not make much sense.
Therefore the following paragraph describes only the usage of shared tables with index
allocation.

Like its super class MibTable, an AgentXSharedTable may be added to a MibGroup

instance, in order to make it persistent and group it with other MIB objects. Although it is
then registered with the master as part of the MibGroup, it will be able to register its rows
separately, because less specific registrations (the group) are overruled by more specific
registrations (the shared table’s rows).

If persistency is not needed for a specific shared table, it may be not part of a MibGroup

and it should be then added to the SubAgentXMib instance by its add_no_reg method after

its initialization, in order to avoid the registration of the table as a whole. The registration of
the whole table would not cause any damage, but it would slightly decrease performance.

When an AgentXSharedTable instance is created, the following information is needed:

• the object identifier of the table’s entry object definition
• the index structure information as an array of index_info structures (one element for

each index object)
• for each index object its object identifier
• a reference to the SubAgentXMib instance of the subagent, which will be used to process

index allocation and registration requests
• the context name of the table’s context

The below examples illustrates the creation of a shared ifTable (1.3.6.1.2.1.2.2) for the
default context:

const index_info indIfEntry[1] = {
 { sNMP_SYNTAX_INT, FALSE, 1, 1 } }
const Oidx indIfEntryOIDs[1] = { “1.3.6.1.2.1.2.2.1.1” };

ifEntry::ifEntry(const OctetStr& context, SubAgentXMib* mib):
 AgentXSharedTable(“1.3.6.1.2.1.2.2.1”, // table OID
 indIfEntry, 1, // index info

 28

 indIfEntryOIDs, // index obj OIDs
 mib, // back reference
 context) // the context
{
 add_col(new ifIndex(colIfIndex));
 add_col(new ifDescr(colIfDescr));
 ...
}

AgentXSharedTable ifTable = new ifEntry(“”, mib);

The shared table created above could then be added to the default context of the

subagent’s MIB by:

mib->add_no_reg(“”, ifTable);

As describe in section 5.2.2, a new row is added to a shared table by first allocating an

index value for the row and then, after the successful index allocation and row registration,
setting the values of the row’s objects. The index allocation can be done in three ways:

1. Allocating a new index value that has never been allocated before10:

ifTable->new_index();

2. Allocating a new index value that is currently not used otherwise11:

ifTable->any_index();

3. Allocating a specific index value:

ifTable->allocate_index(“42”);

When the index allocation has been successfully completed, the row is registered and the

table’s row_added method is called (see). Thus, the row_added method has to be
overwritten, in order to set (initialize) the values of the new row. This can be accomplished
for example by:

Figure 7

void ifEntry::row_added(MibTableRow* row,
 const Oidx& index, MibTable*)
{
 // The row 'row' with 'index' has been added to the table.
 // Thus, the row's index is successfuly registered as well as
 // the row's region.
 // Now you may fill it with values
 row->get_nth(0)->replace_value(new SnmpInt32(index[0]));
 row->get_nth(1)->replace_value(new OctetStr(“eth42”));
 ...
}

10 Within the same context and during the runtime of the master agent.
11 Within the same context.

 29

A row is removed from the subagent by calling the remove_row method of the shared
table. The index of the row is then deallocated and the row is deregistered. Both requests
are sent independently to the master agent. When both requests are sent, the row_delete
event is fired12 and the row is removed from the table afterwards.

A complete example of subagents sharing a table comes with the AgentX++ source code.
Please read also section 5.2.2 for more information on shared tables and on how to
effectively use/implement row registration.

r12 A MibTable can fire five events, which are row_added, row_delete, ow_activated,

row_deacrtivated, and row_init. These events are named after the table’s methods that are called
when such an event is fired. Other tables can register for these events by calling the add_listener of a
table.

	Contents
	System Requirements
	Installation
	What Is AgentX++?
	How AgentX++ Works
	The Master Agent
	AgentX Session Management
	AgentX++ Region Registration
	AgentX Message Dispatching
	Response Processing
	Notification Forwarding
	Index Allocation

	The Subagent
	Region Registration
	Shared Tables

	Using AgentX++
	Creating an AgentX Master Agent
	Configuration Options

	Creating an AgentX Subagent
	Using Shared Tables

